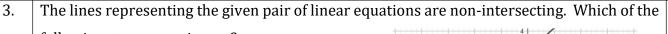
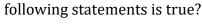
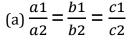
## **SAMPLE QUESTION PAPER**

### Class X Session 2023-24


## **MATHEMATICS STANDARD (Code No.041)**

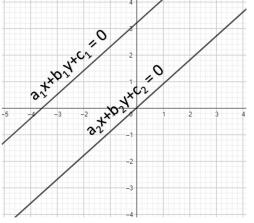

TIME: 3 hours MAX.MARKS: 80


#### **General Instructions:**

- 1. This Question Paper has 5 Sections A, B, C, D and E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take  $\pi = 22/7$  wherever required if not stated.

|    | SEC                                                                                                                                                                                                        | TION A       |                                              |   |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------|---|--|
|    | Section A consists of 20 questions of 1 mark each.                                                                                                                                                         |              |                                              |   |  |
| 1. | If two positive integers a and b are written as $a = x^3y^2$ and $b = xy^3$ , where x, y are prime numbers, then the result obtained by dividing the product of the positive integers by the LCM (a, b) is |              |                                              |   |  |
|    | (a) xy (b) xy <sup>2</sup>                                                                                                                                                                                 | (c) $x^3y^3$ | (d) $x^2y^2$                                 |   |  |
| 2. |                                                                                                                                                                                                            |              |                                              | 1 |  |
|    | The given linear polynomial y = f(x) has  (a) 2 zeros  (b) 1 zero and the zero is '3'  (c) 1 zero and the zero is '4'  (d) No zero                                                                         | _4 _3 _2     | 5 (0, 4)  4 (0, 4)  3 (3, 0)  -1 0 1 2 3 4 5 |   |  |








(b) 
$$\frac{a1}{a2} = \frac{b1}{b2} \neq \frac{c1}{c2}$$

(c) 
$$\frac{a1}{a2} \neq \frac{b1}{b2} = \frac{c1}{c2}$$

(d) 
$$\frac{a1}{a2} \neq \frac{b1}{b2} \neq \frac{c1}{c2}$$



- 4. The nature of roots of the quadratic equation  $9x^2 6x 2 = 0$  is:
  - (a) No real roots

(b) 2 equal real roots

(c) 2 distinct real roots

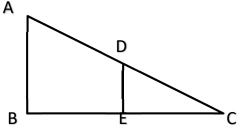
- (d) More than 2 real roots
- 5. Two APs have the same common difference. The first term of one of these is –1 and that of the other is 8. The difference between their 4th terms is
  - (a) 1
- (b) -7
- (c) 7
- (d) 9
- 6. What is the ratio in which the line segment joining (2,-3) and (5, 6) is divided by x-axis?
  - (a) 1:2
- (b) 2:1
- (c) 2:5
- (d) 5:2
- 7. A point (x,y) is at a distance of 5 units from the origin. How many such points lie in the third quadrant?
  - (a) 0
- (b) 1
- (c) 2
- (d) infinitely many

1

1

1

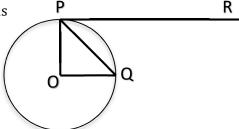
8. In  $\triangle$  ABC, DE || AB. If AB = a, DE = x, BE = b and EC = c.


Then x expressed in terms of a, b and c is:



(b) 
$$\frac{ac}{b+c}$$

(c)  $\frac{ab}{c}$ 






9. If O is centre of a circle and Chord PQ makes an angle 50° with the tangent PR at the point of contact

P, then the angle subtended by the chord at the centre is

- (a) 130°
- (b) 100°
- (c) 50°
- (d) 30°



| 10. | A quadrilater                | al PQRS is dr                    | awn to circui       | nscribe a circ   | cle.                             | <u>P_</u>           | 12 Q                         | 1 |
|-----|------------------------------|----------------------------------|---------------------|------------------|----------------------------------|---------------------|------------------------------|---|
|     | If PQ = 12 cm                | , QR = 15 cm                     | and RS = 14         | cm, then find    | the length of                    | SP is               | 15                           |   |
|     | (a) 15 cm                    |                                  | (b) 14 cm           |                  |                                  |                     |                              |   |
|     | (b) (c) 12                   | cm                               | (d) 11 cm           |                  |                                  | S                   | 14 R                         |   |
| 11. | Given that sin               | $\theta = \frac{a}{b}$ , then co | os θ is.            |                  |                                  |                     |                              | 1 |
|     | (a) $\frac{b}{\sqrt{b^2-a}}$ | $\overline{\overline{a^2}}$      | (b) $\frac{b}{a}$   |                  | (c) $\frac{\sqrt{b^2 - a^2}}{b}$ | (dː                 | $\frac{a}{\sqrt{b^2 - a^2}}$ |   |
| 12. | (sec A + tan A)              | (1 – sin A) eq                   | uals:               |                  |                                  |                     |                              | 1 |
|     | (a) sec A                    |                                  | (b) sin A           |                  | (c) cosec A                      | (0                  | l) cos A                     |   |
| 13. | If a pole 6 m l              | high casts a s                   | hadow 2 √3n         | n long on the    | ground, then                     | the Sun's ele       | evation is                   | 1 |
|     | (a) 60°                      |                                  | (b) 45°             |                  | (c) 30°                          | (0                  | d) 90°                       |   |
| 14. | If the perime                | ter and the a                    | rea of a circle     | are numerio      | cally equal, th                  | en the radiu        | s of the circle              | 1 |
|     | is                           |                                  |                     |                  |                                  |                     |                              |   |
|     | (a) 2 units                  | S                                | (b) π units         | (                | (c) 4 units                      | <b>(</b> d          | l) 7 units                   |   |
| 15. | It is proposed               | d to build a n                   | ew circular p       | ark equal in a   | area to the su                   | ım of areas o       | f two circular               |   |
|     | parks of diam                | neters 16 m a                    | nd 12 m in a        | locality. The    | radius of the                    | new park is         |                              |   |
|     | (a) 10m                      | (                                | b) 15m              | (                | c) 20m                           | (d                  | ) 24m                        |   |
| 16. | There is a sq                | uare board c                     | of side '2a' ur     | nits circumsc    | ribing a red                     | circle. Jayade      | ev is asked to               | 1 |
|     | keep a dot or                | n the above s                    | aid board. T        | he probabili     | ty that he ke                    | eps the dot o       | n the shaded                 |   |
|     | region is.                   |                                  |                     |                  |                                  |                     |                              |   |
|     | (a) $\frac{\pi}{4}$          | (b)                              | $\frac{4-\pi}{}$    | (c) <sup>1</sup> | $\tau$ -4                        | (d) $\frac{4}{\pi}$ |                              |   |
|     | <sup>(a)</sup> 4             | (0)                              | 4                   | (0)              | 4                                | $\pi$               |                              |   |
| 17. | 2 cards of hea               | rts and 4 card                   | ls of spades a      | re missing fro   | m a pack of 5                    | 2 cards. A ca       | rd is drawn at               | 1 |
|     | random from t                | the remaining                    | pack. What is       | the probability  | of getting a b                   | lack card?          |                              |   |
|     | (a) $\frac{22}{52}$          |                                  | (b) $\frac{22}{46}$ | (                | (c) $\frac{24}{52}$              | (d)                 | 24                           |   |
|     |                              |                                  |                     |                  |                                  |                     | 46                           |   |
| 18. | The upper lin                | nit of the mod                   | dal class of th     | e given distri   | bution is:                       |                     |                              | 1 |
|     | Height [in cm]               | Below 140                        | Below 145           | Below 150        | Below 155                        | Below 160           | Below 165                    |   |
|     | Number of girls              | 4                                | 11                  | 29               | 40                               | 46                  | 51                           |   |

|     | ( ) 465                    | d) 460                                          | ( ) 455                       | (D. 450                        |   |
|-----|----------------------------|-------------------------------------------------|-------------------------------|--------------------------------|---|
|     | (a) 165                    | (b) 160                                         |                               | (d) 150                        |   |
| 19. |                            | _                                               |                               | assertion (A) is followed by   | 1 |
|     | a statement of Rea         | ison (R). Choose the corr                       | ect option                    |                                |   |
|     |                            |                                                 |                               |                                |   |
|     | -                          | ertion): Total Surface ar                       | -                             | /                              |   |
|     |                            | ea of the hemisphere and                        | the curved surface            | area of the                    |   |
|     | cone.                      |                                                 |                               | \ /                            |   |
|     |                            | son) : Top is obtained by                       | $\gamma$ joining the plane su | ırfaces of the                 |   |
|     | hemisphere and c           | _                                               |                               | •                              |   |
|     |                            |                                                 | e true and reason (R          | (a) is the correct explanation |   |
|     | of assertior               | ı (A)                                           |                               |                                |   |
|     |                            |                                                 | ) are true and reas           | son (R) is not the correct     |   |
|     | •                          | of assertion (A)                                |                               |                                |   |
|     |                            | .) is true but reason (R) is                    |                               |                                |   |
|     | (d) Assertion (A           | A) is false but reason (R) i                    | s true.                       |                                |   |
| 20. | Statement A (Asse          | rtion): -5, $\frac{-5}{2}$ , 0, $\frac{5}{2}$ , | is in Arithmetic Prog         | gression.                      | 1 |
|     | Statement R (Reas          | son) : The terms of an Ar                       | ithmetic Progression          | n cannot have both positive    |   |
|     | and negative ratio         | nal numbers.                                    |                               |                                |   |
|     | (a) Both asserti           | on (A) and reason (R) ar                        | e true and reason (R          | (x) is the correct explanation |   |
|     | of assertior               | ı (A)                                           |                               |                                |   |
|     | (b) Both asser             | tion (A) and reason (R                          | ) are true and reas           | son (R) is not the correct     |   |
|     | explanation                | of assertion (A)                                |                               |                                |   |
|     | (c) Assertion (A           | ) is true but reason (R) is                     | s false.                      |                                |   |
|     | (d) Assertion (A           | a) is false but reason (R) i                    | s true.                       |                                |   |
|     |                            | SEC                                             | CTION B                       |                                |   |
|     |                            | Section B consists of 5                         | questions of 2 mar            | ks each.                       |   |
| 21. | Prove that $\sqrt{2}$ is a | n irrational number.                            |                               |                                | 2 |
|     |                            |                                                 |                               |                                |   |
|     |                            |                                                 |                               |                                |   |

| 22. | ABCD is a parallelogram. Point P divides AB in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | ratio 2:3 and point Q divides DC in the ratio 4:1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|     | Prove that OC is half of OA.  A  B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| 23. | From an external point P, two tangents, PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 |
|     | and PB are drawn to a circle with centre 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|     | At a point E on the circle, a tangent is drawn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|     | to intersect PA and PB at C and D,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|     | respectively. If PA = 10 cm, find the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|     | perimeter of $\Delta$ PCD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|     | B/D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 24. | If tan (A + B) = $\sqrt{3}$ and tan (A - B) = $\frac{1}{\sqrt{3}}$ ; 0° < A + B < 90°; A > B, find A and B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 |
|     | [or]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|     | Find the value of x if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|     | $2\csc^2 30 + x\sin^2 60 - \frac{3}{4}\tan^2 30 = 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 25. | With vertices A, B and C of ΔABC as centres, arcs are drawn with radii 14 cm and the three                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 |
|     | portions of the triangle so obtained are removed. Find the total area removed from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|     | triangle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|     | [or]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|     | 14 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|     | Find the area of the unshaded region shown in the given figure.  3 cm 3 cm 14 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|     | SECTION C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|     | Section C consists of 6 questions of 3 marks each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| 26  | National Autopayantian ast magistrations from at Janta Committee C | 2 |
| 26. | National Art convention got registrations from students from all parts of the country, of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 |
|     | which 60 are interested in music, 84 are interested in dance and 108 students are interested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |

|          | in handicrafts. For opti                                                                      | mum cultural exchans                                              | ge, organisers wish to               | keep them in minimum       |   |
|----------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------|----------------------------|---|
|          | number of groups such                                                                         | that each group consi                                             | sts of students intere               | sted in the same artform   |   |
|          | and the number of stude                                                                       | ents in each group is t                                           | he same. Find the nu                 | mber of students in each   |   |
|          | group. Find the number                                                                        | r of groups in each ar                                            | t form. How many ro                  | oms are required if each   |   |
|          | group will be allotted a                                                                      | room?                                                             |                                      |                            |   |
|          |                                                                                               |                                                                   |                                      |                            |   |
| 27.      | If $\alpha$ , $\beta$ are zeroes of quadrates                                                 | dratic polynomial $5x^2$                                          | + $5x + 1$ , find the value          | ie of                      | 3 |
|          | 1. $\alpha^2 + \beta^2$                                                                       |                                                                   |                                      |                            |   |
|          | 2. $\alpha^{-1} + \beta^{-1}$                                                                 |                                                                   |                                      |                            |   |
| 28.      | The sum of a two digit number and the number obtained by reversing the digits is 66. If the 3 |                                                                   |                                      | 3                          |   |
|          | digits of the number differ by 2, find the number. How many such numbers are there?           |                                                                   |                                      |                            |   |
|          | [or]                                                                                          |                                                                   |                                      |                            |   |
|          | Solve: - $\frac{2}{\sqrt{x}} + \frac{3}{\sqrt{x}}$                                            | $\frac{3}{y} = 2$ ; $\frac{4}{\sqrt{x}} - \frac{9}{\sqrt{y}} = -$ | 1, x,y>0                             |                            |   |
| 29.      | PA and PB are tangents drawn to a circle of centre O from an external point P. Chord AB 3     |                                                                   |                                      |                            | 3 |
|          | makes an angle of 30° w                                                                       | rith the radius at the p                                          | oint of contact.                     |                            |   |
|          | If length of the chord is                                                                     | 6 cm, find the length                                             | of the tangent PA and                | l the length of the radius |   |
|          | OA.                                                                                           | OB                                                                | P                                    |                            |   |
|          |                                                                                               | [c                                                                | or]                                  |                            |   |
|          | Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove    |                                                                   |                                      |                            |   |
|          | that $\angle$ PTQ = 2 $\angle$ OPQ.                                                           |                                                                   |                                      |                            |   |
| 30.      | If $1 + \sin^2\theta = 3\sin\theta\cos\theta$                                                 | , then prove that tan                                             | $\theta = 1 \text{ or } \frac{1}{2}$ |                            | 3 |
| 31.      | The length of 40 leaves                                                                       | of a plant are measur                                             | ed correct to nearest                | millimetre, and the data   | 3 |
|          | obtained is represented                                                                       | in the following table                                            | 2.                                   |                            |   |
|          |                                                                                               | Length [in mm]                                                    | Number of leaves                     |                            |   |
|          |                                                                                               | 118 – 126                                                         | 3                                    |                            |   |
|          |                                                                                               | 127 - 135                                                         | 5                                    |                            |   |
|          |                                                                                               | 136 - 144                                                         | 9                                    |                            |   |
| <u> </u> |                                                                                               |                                                                   |                                      | J                          |   |

|     |                                                                                                        | 145 – 153          | 12                                    |                                       |   |
|-----|--------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------|---------------------------------------|---|
|     |                                                                                                        |                    |                                       | -                                     |   |
|     |                                                                                                        | 154 – 162          | 5                                     | _                                     |   |
|     |                                                                                                        | 163 – 171          | 4                                     |                                       |   |
|     |                                                                                                        | 172 - 180          | 2                                     |                                       |   |
|     | Find the mean length of                                                                                | the leaves.        | <u>'</u>                              | _                                     |   |
|     |                                                                                                        | Sl                 | ECTION D                              |                                       |   |
|     | Secti                                                                                                  | on D consists of   | 4 questions of 5 marks                | each                                  |   |
| 32. | A motor boat whose spec                                                                                | ed is 18 km/h in s | till water takes 1 hour mo            | ore to go 24 km upstream              | 5 |
|     | than to return downstre                                                                                | am to the same s   | pot. Find the speed of str            | eam.                                  |   |
|     |                                                                                                        |                    | [or]                                  |                                       |   |
|     | Two water taps together                                                                                | can fill a tank in | $9\frac{3}{8}$ hours. The tap of larg | er diameter takes 10                  |   |
|     |                                                                                                        |                    | O                                     |                                       |   |
|     |                                                                                                        |                    | tank separately. Find the             | time in which each tap                |   |
| 20  | can separately fill the ta                                                                             |                    |                                       |                                       |   |
| 33. | (a) State and prove Basis  (b) In the given figure $\angle$ Prove that $\frac{AB}{BD} = \frac{AE}{FD}$ |                    |                                       | D F C                                 | 5 |
| 34. | Water is flowing at the                                                                                | rate of 15 km/h t  | through a pipe of diamet              | er 14 cm into a cuboidal              | 5 |
|     | pond which is 50 m long                                                                                | and 44 m wide. I   | n what time will the leve             | l of water in pond rise by            |   |
|     | 21 cm?                                                                                                 |                    |                                       |                                       |   |
|     | What should be the spee                                                                                | ed of water if the | rise in water level is to be          | e attained in 1 hour?                 |   |
|     |                                                                                                        |                    | [or]                                  |                                       |   |
|     | A tent is in the shape of                                                                              | a cylinder surmo   | unted by a conical top. If            | the height and radius of              |   |
|     | the cylindrical part are 3                                                                             | m and 14 m resp    | ectively, and the total he            | ight of the tent is 13.5 m,           |   |
|     | find the area of the can                                                                               | vas required for   | making the tent, keeping              | g a provision of 26 m <sup>2</sup> of |   |
|     | canvas for stitching and                                                                               | wastage. Also, fin | d the cost of the canvas to           | be purchased at the rate              |   |
|     | of ₹ 500 per m <sup>2</sup> .                                                                          |                    |                                       |                                       |   |

| 35. | The median of the following data is 50. Find the values of 'p' and 'q', if the sum of all frequencies is | 5 |
|-----|----------------------------------------------------------------------------------------------------------|---|
|     | 90. Also find the mode of the data.                                                                      |   |

| Marks obtained | Number of students |
|----------------|--------------------|
| 20 - 30        | p                  |
| 30 - 40        | 15                 |
| 40 – 50        | 25                 |
| 50 – 60        | 20                 |
| 60 – 70        | q                  |
| 70 – 80        | 8                  |
| 80 - 90        | 10                 |

#### **SECTION E**

36. Manpreet Kaur is the national record holder for women in the shot-put discipline. Her throw of

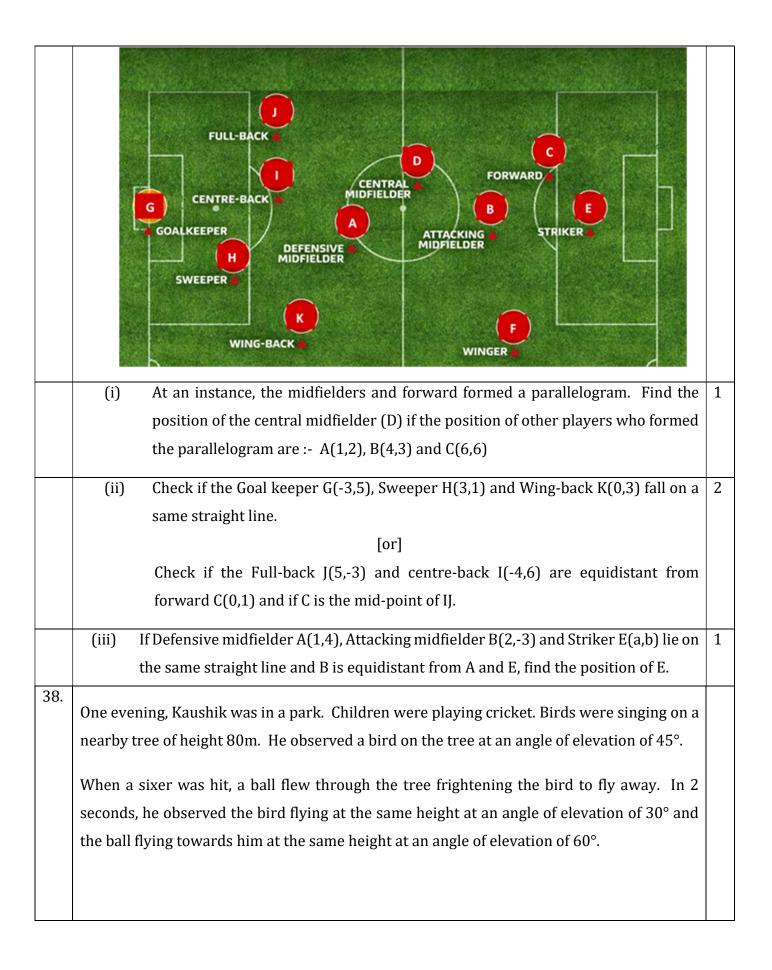
18.86m at the Asian Grand Prix in 2017 is the maximum distance for an Indian female athlete.

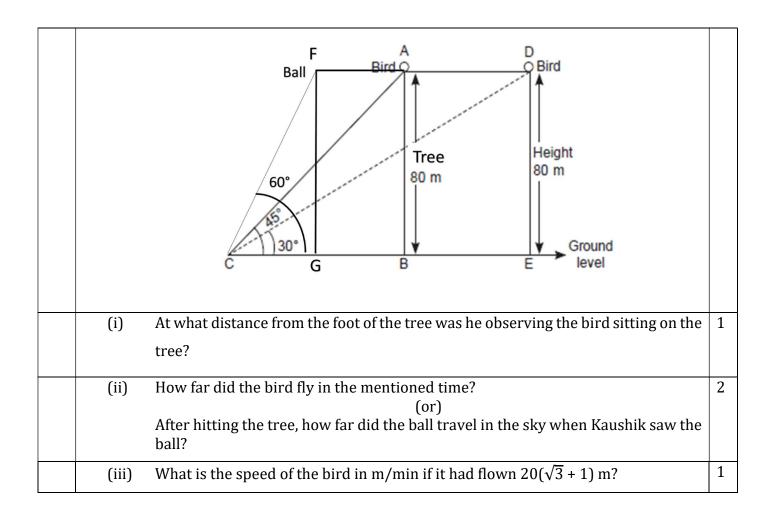
Keeping her as a role model, Sanjitha is determined to earn gold in Olympics one day.

Initially her throw reached 7.56m only. Being an athlete in school, she regularly practiced both in the mornings and in the evenings and was able to improve the distance by 9cm every week.

During the special camp for 15 days, she started with 40 throws and every day kept increasing the number of throws by 12 to achieve this remarkable progress.




| (1)  | How many throws Sanjitha practiced on 11 <sup>th</sup> day of the camp? | 1 |
|------|-------------------------------------------------------------------------|---|
| (ii) | What would be Sanjitha's throw distance at the end of 6 weeks?          | 2 |


(or)
When will she be able to achieve a throw of 11.16 m?

(iii) How many throws did she do during the entire camp of 15 days?

37. Tharunya was thrilled to know that the football tournament is fixed with a monthly timeframe from 20th July to 20th August 2023 and for the first time in the FIFA Women's World Cup's history, two nations host in 10 venues. Her father felt that the game can be better understood if the position of players is represented as points on a coordinate plane.

1





# Marking Scheme Class X Session 2023-24 MATHEMATICS STANDARD (Code No.041)

TIME: 3 hours MAX.MARKS: 80

|     | SECTION A                                                                                                 |     |
|-----|-----------------------------------------------------------------------------------------------------------|-----|
|     | Section A consists of 20 questions of 1 mark each.                                                        |     |
| 1.  | (b) $xy^2$                                                                                                | 1   |
| 2.  | (b) 1 zero and the zero is '3'                                                                            | 1   |
| 3.  | $a_0 = \frac{a_1}{a_1} - \frac{b_1}{a_2} + \frac{c_1}{a_2}$                                               | 1   |
|     | (b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$                                              |     |
| 4.  | (c) 2 distinct real roots                                                                                 | 1   |
| 5.  | (c) 7                                                                                                     | 1   |
| 6.  | (a) 1:2                                                                                                   | 1   |
| 7.  | (d) infinitely many ac                                                                                    | 1   |
| 8.  | (b) —                                                                                                     | 1   |
|     | b+c                                                                                                       |     |
| 9.  | (b) 100°                                                                                                  | 1   |
| 10. | (d) 11 cm                                                                                                 | 1   |
| 11. | $\sqrt{b^2-a^2}$                                                                                          | 1   |
|     | $(c) \frac{}{}$                                                                                           |     |
| 12. | (d) cos A                                                                                                 | 1   |
| 13. | (a) 60°                                                                                                   | 1   |
| 14. | (a) 2 units                                                                                               | 1   |
| 15. | (a) 10m                                                                                                   | 1   |
| 16. | $4-\pi$                                                                                                   | 1   |
|     | $(b) {4}$                                                                                                 |     |
| 17. | (b) $\frac{22}{16}$                                                                                       | 1   |
|     | 46                                                                                                        |     |
| 18. | (d) 150                                                                                                   | 1   |
| 19. | (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) | 1   |
| 20. | (c) Assertion (A) is true but reason (R) is false.                                                        | 1   |
|     | SECTION B                                                                                                 |     |
|     | Section B consists of 5 questions of 2 marks each.                                                        |     |
| 21. | Let us assume, to the contrary, that $\sqrt{2}$ is rational.                                              |     |
|     | So, we can find integers $a$ and $b$ such that $\sqrt{2} = \frac{a}{b}$ where $a$ and $b$ are coprime.    | 1/2 |
|     | b b                                                                                                       |     |
|     | So, b $\sqrt{2} = a$ . Squaring both sides                                                                |     |
|     | Squaring both sides, we get $2b^2 = a^2$ .                                                                |     |
|     | Therefore, 2 divides $a^2$ and so 2 divides a.                                                            | 1/2 |
|     | So, we can write a = 2c for some integer c.                                                               |     |
|     | Substituting for a, we get $2b^2 = 4c^2$ , that is, $b^2 = 2c^2$ .                                        | 1/2 |
|     | This means that 2 divides b <sup>2</sup> , and so 2 divides b                                             | 72  |
|     | Therefore, a and b have at least 2 as a common factor.                                                    |     |
|     | But this contradicts the fact that a and b have no common factors other than 1.                           | 1/2 |
|     | This contradiction has arisen because of our incorrect assumption that $\sqrt{2}$ is rational.            | , 2 |
|     | So, we conclude that $\sqrt{2}$ is irrational.                                                            |     |

| 22. | ABCD is a parallelogram.                                                                                                                                 | 1/2                             |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|     | AB = DC = a Point P divides AB in the ratio 2:3                                                                                                          |                                 |
|     | AP = $\frac{2}{r}$ a, BP = $\frac{3}{r}$ a                                                                                                               |                                 |
|     | point Q divides DC in the ratio 4:1.                                                                                                                     | 1,                              |
|     | $DQ = \frac{4}{5} a , CQ = \frac{1}{5} a$                                                                                                                | 1/2                             |
|     | $\Delta APO \sim \Delta CQO [AA similarity]$                                                                                                             |                                 |
|     | $\frac{AP}{CQ} = \frac{PO}{QO} = \frac{AO}{CO}$                                                                                                          | 1/2                             |
|     | cq - qo - co                                                                                                                                             | 1/2                             |
|     | $\frac{AO}{5} - \frac{\frac{2}{5}a}{5} - \frac{2}{5} \rightarrow OC = \frac{1}{6}OA$                                                                     | /2                              |
|     | $\frac{AO}{CO} = \frac{\frac{2}{5}a}{\frac{1}{5}a} = \frac{2}{1} \implies OC = \frac{1}{2}OA$                                                            |                                 |
| 23. |                                                                                                                                                          |                                 |
|     | PA = PB; CA = CE; DE = DB [Tangents to a circle]                                                                                                         | 1/2                             |
|     | Perimeter of $\triangle PCD = PC + CD + PD$<br>= $PC + CE + ED + PD$                                                                                     |                                 |
|     | = PC + CA + BD + PD                                                                                                                                      |                                 |
|     | = PA + PB Positive start of ABCD = PA + PA = 2PA = 2(10) = 20                                                                                            | 1                               |
|     | Perimeter of $\triangle PCD = PA + PA = 2PA = 2(10) = 20$<br>cm                                                                                          | 1/2                             |
| 24. | $\therefore \tan(A+B) = \sqrt{3}  \therefore A+B = 60^{0} \qquad \dots (1)$                                                                              | 1/2                             |
|     | $arr \tan(A - B) = \frac{1}{\sqrt{3}}  \therefore A - B = 30^{0}$ (2)                                                                                    | 1/2                             |
|     | Adding (1) & (2), we get $2A=90^0 \implies A=45^0$                                                                                                       | 1/ <sub>2</sub> 1/ <sub>2</sub> |
|     | Also (1) –(2), we get $2B = 30^0 \implies B = 45^0$ [or]                                                                                                 | ,-                              |
|     | [OI]                                                                                                                                                     |                                 |
|     | $2\csc^2 30 + x\sin^2 60 - \frac{3}{4}\tan^2 30 = 10$                                                                                                    |                                 |
|     | $(\sqrt{3})^2$ $(\sqrt{3})^2$                                                                                                                            |                                 |
|     | $\Rightarrow 2(2)^2 + x \left(\frac{\sqrt{3}}{2}\right)^2 - \frac{3}{4} \left(\frac{1}{\sqrt{3}}\right)^2 = 10$                                          | 1                               |
|     | $\Rightarrow$ 2(4) + x $\left(\frac{3}{4}\right)$ - $\frac{3}{4}\left(\frac{1}{3}\right)$ = 10                                                           | 1/2                             |
|     | $\Rightarrow 8 + x \left(\frac{3}{4}\right) - \frac{1}{4} = 10$                                                                                          |                                 |
|     | $\Rightarrow 32 + x(3) - 1 = 40$                                                                                                                         | 1/2                             |
| 25  | $\Rightarrow 3x = 9 \Rightarrow x = 3$ Total area removed = $\frac{\angle A}{360} \pi r^2 + \frac{\angle B}{360} \pi r^2 + \frac{\angle C}{360} \pi r^2$ |                                 |
| 25. | Total area removed = $\frac{1}{360} \pi r^2 + \frac{1}{360} \pi r^2 + \frac{1}{360} \pi r^2$                                                             | 1/2                             |
|     | $=\frac{\angle A+\angle B+\angle C}{360}\pi r^2$                                                                                                         |                                 |
|     | $=\frac{180}{360}\pi r^2$                                                                                                                                | 1/2                             |
|     | $= \frac{180}{360} \times \frac{22}{7} \times (14)^2$                                                                                                    | 1/2                             |
|     | $360 - 7 = 308 \text{ cm}^2$                                                                                                                             | /2                              |
|     | [or]                                                                                                                                                     |                                 |
|     | The side of a square – Diovestor of the same size land                                                                                                   |                                 |
|     | The side of a square = Diameter of the semi-circle = a  Area of the unshaded region                                                                      | 1/2                             |
|     | = Area of a square of side 'a' + 4(Area of a semi-circle of diameter 'a')                                                                                |                                 |
|     | The horizontal/vertical extent of the white region = 14-3-3 = 8 cm                                                                                       | 1/2                             |
|     | Radius of the semi-circle + side of a square + Radius of the semi-circle = 8 cm                                                                          |                                 |

|     | 2 (radius of the semi-circle) + side of a square = 8 cm                                                                                                                                                                                                                               |                                 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|     | $2a = 8 \text{ cm} \Rightarrow a = 4 \text{ cm}$                                                                                                                                                                                                                                      | 1/2                             |
|     | Area of the unshaded region                                                                                                                                                                                                                                                           |                                 |
|     | = Area of a square of side 4 cm + 4 (Area of a semi-circle of diameter 4 cm)                                                                                                                                                                                                          |                                 |
|     | $= (4)^2 + 4 \times \frac{1}{2} \pi (2)^2 = (16 + 8\pi) \text{ cm}^2$                                                                                                                                                                                                                 | 1/2                             |
|     | SECTION C                                                                                                                                                                                                                                                                             |                                 |
|     |                                                                                                                                                                                                                                                                                       |                                 |
| 26  | Section C consists of 6 questions of 3 marks each                                                                                                                                                                                                                                     | 1/                              |
| 26. | Number of students in each group subject to the given condition = HCF $(60,84,108)$ HCF $(60,84,108)$ = 12                                                                                                                                                                            | 1/ <sub>2</sub> 1/ <sub>2</sub> |
|     | Number of groups in Music = $\frac{60}{12}$ = 5                                                                                                                                                                                                                                       | /2                              |
|     | 12                                                                                                                                                                                                                                                                                    | 1/2                             |
|     | Number of groups in Dance = $\frac{84}{13}$ = 7                                                                                                                                                                                                                                       | 1/2                             |
|     | 12                                                                                                                                                                                                                                                                                    | 1/2                             |
|     | Number of groups in Handicrafts = $\frac{108}{12}$ = 9                                                                                                                                                                                                                                | 1/2                             |
|     | Total number of rooms required = 21                                                                                                                                                                                                                                                   |                                 |
| 27. | $P(x) = 5x^2 + 5x + 1$                                                                                                                                                                                                                                                                | 1/2                             |
|     | $\alpha + \beta = \frac{-b}{-} = \frac{-5}{-} = -1$                                                                                                                                                                                                                                   | 1,                              |
|     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                  | 1/2                             |
|     | $\alpha + \beta = \frac{-b}{a} = \frac{-5}{5} = -1$ $\alpha \beta = \frac{c}{a} = \frac{1}{5}$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$                                                                                                                               | 1/2                             |
|     | $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$                                                                                                                                                                                                                              | 1/2                             |
|     | $=(-1)^2-2\left(\frac{1}{5}\right)$                                                                                                                                                                                                                                                   | 72                              |
|     | 2 3                                                                                                                                                                                                                                                                                   | 1/2                             |
|     | = 1 - <del>-</del> = <del>-</del> 5                                                                                                                                                                                                                                                   |                                 |
|     | $= 1 - \frac{2}{5} = \frac{3}{5}$ $\alpha^{-1} + \beta^{-1} = \frac{1}{\alpha} + \frac{1}{\beta}$                                                                                                                                                                                     | 1/2                             |
|     |                                                                                                                                                                                                                                                                                       |                                 |
|     | $=\frac{(\alpha+\beta)}{\alpha\beta}=\frac{(-1)}{\frac{1}{2}}=-5$                                                                                                                                                                                                                     |                                 |
|     | $\frac{1}{\alpha\beta}$ $\frac{1}{5}$ $\frac{1}{5}$                                                                                                                                                                                                                                   |                                 |
| 28. | Let the ten's and the unit's digits in the first number be x and y, respectively.                                                                                                                                                                                                     |                                 |
|     | So, the original number = $10x + y$                                                                                                                                                                                                                                                   |                                 |
|     | When the digits are reversed, x becomes the unit's digit and y becomes the ten's                                                                                                                                                                                                      |                                 |
|     | Digit.                                                                                                                                                                                                                                                                                | 1/2                             |
|     | So the obtain by reversing the digits= 10y + x                                                                                                                                                                                                                                        |                                 |
|     | According to the given condition.                                                                                                                                                                                                                                                     |                                 |
|     | (10x + y) + (10y + x) = 66                                                                                                                                                                                                                                                            | 1,                              |
|     | i.e., $11(x + y) = 66$                                                                                                                                                                                                                                                                | 1/2                             |
|     | i.e., $x + y = 6 - (1)$                                                                                                                                                                                                                                                               | 1/                              |
|     | We are also given that the digits differ by 2, therefore, either $x - y = 2$ (2)                                                                                                                                                                                                      | 1/ <sub>2</sub> 1/ <sub>2</sub> |
|     | or $y - x = 2 - (3)$                                                                                                                                                                                                                                                                  | 72                              |
|     | If $x - y = 2$ , then solving (1) and (2) by elimination, we get $x = 4$ and $y = 2$ .                                                                                                                                                                                                | 1/2                             |
|     |                                                                                                                                                                                                                                                                                       |                                 |
|     |                                                                                                                                                                                                                                                                                       | /2                              |
|     | In this case, we get the number 42.                                                                                                                                                                                                                                                   |                                 |
|     | In this case, we get the number $42$ .<br>If $y - x = 2$ , then solving (1) and (3) by elimination, we get $x = 2$ and $y = 4$ .                                                                                                                                                      | 1/2                             |
|     | In this case, we get the number 42.<br>If $y - x = 2$ , then solving (1) and (3) by elimination, we get $x = 2$ and $y = 4$ .<br>In this case, we get the number 24.                                                                                                                  |                                 |
|     | In this case, we get the number $42$ .<br>If $y - x = 2$ , then solving (1) and (3) by elimination, we get $x = 2$ and $y = 4$ .<br>In this case, we get the number $24$ .<br>Thus, there are two such numbers $42$ and $24$ .<br>[or]                                                |                                 |
|     | In this case, we get the number $42$ .<br>If $y - x = 2$ , then solving (1) and (3) by elimination, we get $x = 2$ and $y = 4$ .<br>In this case, we get the number $24$ .<br>Thus, there are two such numbers $42$ and $24$ .<br>[or]                                                |                                 |
|     | In this case, we get the number 42.  If $y - x = 2$ , then solving (1) and (3) by elimination, we get $x = 2$ and $y = 4$ .  In this case, we get the number 24.  Thus, there are two such numbers 42 and 24.  [or]  Let $\frac{1}{\sqrt{x}}$ be 'm' and $\frac{1}{\sqrt{y}}$ be 'n', | 1/2                             |
|     | In this case, we get the number $42$ .<br>If $y - x = 2$ , then solving (1) and (3) by elimination, we get $x = 2$ and $y = 4$ .<br>In this case, we get the number $24$ .<br>Thus, there are two such numbers $42$ and $24$ .<br>[or]                                                | 1/2                             |

|     | $(2m + 3n = 2) X-2 \Rightarrow -4m - 6n = -4$ (1)                                                                        |                                 |
|-----|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|     | 4m - 9n = -1 $4m - 9n = -1$ (2)                                                                                          |                                 |
|     | Adding (1) and (2)                                                                                                       | 1,                              |
|     | We get $-15n = -5 \Rightarrow n = \frac{1}{3}$                                                                           | 1/2                             |
|     | 4                                                                                                                        |                                 |
|     | Substituting $n = \frac{1}{3}$ in 2m + 3n = 2, we get                                                                    | 1/2                             |
|     | 2m + 1 = 2                                                                                                               | ,-                              |
|     | 2m = 1                                                                                                                   |                                 |
|     | $m = \frac{1}{2}$                                                                                                        | 1                               |
|     | $m = \frac{1}{2} \implies \sqrt{x} = 2 \implies x = 4 \text{ and } n = \frac{1}{3} \implies \sqrt{y} = 3 \implies y = 9$ |                                 |
| 29. | 2                                                                                                                        |                                 |
| L). | $\angle OAB = 30^{\circ}$                                                                                                |                                 |
|     | ∠OAP = 90° [Angle between the tangent and                                                                                |                                 |
|     | the radius at the point of contact]                                                                                      |                                 |
|     | $\angle PAB = 90^{\circ} - 30^{\circ} = 60^{\circ}$                                                                      | 1/2                             |
|     | AP = BP [Tangents to a circle from an external point]                                                                    |                                 |
|     | $\angle PAB = \angle PBA$ [Angles opposite to equal sides of a triangle]                                                 | 1/2                             |
|     | In $\triangle$ ABP, $\angle$ PAB + $\angle$ PBA + $\angle$ APB = 180° [Angle Sum Property]                               |                                 |
|     | $60^{\circ} + 60^{\circ} + \angle APB = 180^{\circ}$                                                                     |                                 |
|     | $\angle APB = 60^{\circ}$                                                                                                | 1/2                             |
|     | $\therefore$ ΔABP is an equilateral triangle, where AP = BP = AB.<br>PA = 6 cm                                           | 1/                              |
|     | In Right $\triangle OAP$ , $\angle OPA = 30^{\circ}$                                                                     | 1/2                             |
|     | to $20^{\circ} - \frac{0A}{2}$                                                                                           |                                 |
|     | $\tan 30^{\circ} = \frac{1}{PA}$                                                                                         | 1/2                             |
|     | $\tan 30^\circ = \frac{OA}{PA}$ $\frac{1}{\sqrt{3}} = \frac{OA}{6}$                                                      | /2                              |
|     | $OA = \frac{6}{\sqrt{3}} = 2\sqrt{3}cm$                                                                                  | 1/2                             |
|     | [or]                                                                                                                     |                                 |
|     | r. 1                                                                                                                     |                                 |
|     | Let $\angle TPQ = \theta$                                                                                                |                                 |
|     | ∠ TPO = 90° [Angle between the tangent and                                                                               |                                 |
|     | the radius at the point of contact]                                                                                      | 1/2                             |
|     | $\angle OPQ = 90^{\circ} - \theta$                                                                                       |                                 |
|     | TP = TQ [Tangents to a circle from an external]                                                                          |                                 |
|     | point]                                                                                                                   | 1,                              |
|     | $\angle TPQ = \angle TQP = \theta$ [Angles opposite to equal sides of a triangle]                                        | 1/2                             |
|     | In $\triangle PQT$ , $\angle PQT + \angle QPT + \angle PTQ = 180^{\circ}$ [Angle Sum Property]                           | 1/ <sub>2</sub> 1/ <sub>2</sub> |
|     | $\theta + \theta + \angle PTQ = 180^{\circ}$                                                                             | 72                              |
|     | $\angle PTQ = 180^{\circ} - 2 \theta$                                                                                    | 1/2                             |
|     | $\angle PTQ = 2 (90^{\circ} - \theta)$                                                                                   | 1/2                             |
|     | $\angle PTQ = 2 \angle OPQ$ [using (1)]                                                                                  |                                 |
| 30. | Given, $1 + \sin^2\theta = 3 \sin\theta \cos\theta$                                                                      |                                 |
|     | Dividing both sides by $\cos^2\theta$ ,                                                                                  |                                 |
|     | $\frac{1}{\cos^2\theta} + \tan^2\theta = 3\tan\theta$                                                                    |                                 |
|     | $sec^2θ + tan^2θ = 3 tan θ$                                                                                              | 1/2                             |
|     | $1 + \tan^2\theta + \tan^2\theta = 3 \tan \theta$                                                                        | 1/2                             |
|     | $1 + 2 \tan^2 \theta = 3 \tan \theta$                                                                                    | 1/ <sub>2</sub>                 |
|     | $2 \tan^2 \theta - 3 \tan \theta + 1 = 0$                                                                                | 1/2                             |
|     | If $\tan \theta = x$ , then the equation becomes $2x^2 - 3x + 1 = 0$                                                     |                                 |

|     | $\Rightarrow (x-1)(2x-1) = 0 \text{ x} = 1 \text{ or } \frac{1}{2}$                                                                                                                                                                   |                      |                                      |                                      |            |     |     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------|--------------------------------------|------------|-----|-----|
|     | $\tan \theta = 1 \text{ or } \frac{1}{2}$                                                                                                                                                                                             |                      |                                      |                                      | 1          |     |     |
| 31. | Tarada                                                                                                                                                                                                                                | Nl C                 |                                      |                                      |            |     |     |
|     | Length [in mm]                                                                                                                                                                                                                        | Number of leaves (f) | CI                                   | Mid x                                | d          | fd  |     |
|     | 118 - 126                                                                                                                                                                                                                             | 3                    | 117.5- 126.5                         | 122                                  | -27        | -81 |     |
|     | 127 - 135                                                                                                                                                                                                                             | 5                    | 126.5- 135.5                         | 131                                  | -18        | -90 |     |
|     | 136 - 144                                                                                                                                                                                                                             | 9                    | 135.5- 144.5                         | 140                                  | -9         | -81 |     |
|     | 145 - 153                                                                                                                                                                                                                             | 12                   | 144.5 – 153.5                        | a = 149                              | 0          | 0   |     |
|     | 154 - 162                                                                                                                                                                                                                             | 5                    | 153.5 - 162.5                        | 158                                  | 9          | 45  | 2   |
|     | 163 - 171                                                                                                                                                                                                                             | 4                    | 162.5 – 171.5                        | 167                                  | 18         | 72  | 1/2 |
|     | 172 - 180                                                                                                                                                                                                                             | 2                    | 171.5 - 180.5                        | 176                                  | 27         | 54  | 1/2 |
|     |                                                                                                                                                                                                                                       | Mean                 | $= a + \frac{\sum fd}{\sum f} = 149$ | + -8                                 |            |     |     |
|     |                                                                                                                                                                                                                                       |                      | = 149 - 2.025 = 1                    |                                      |            |     |     |
|     | Average length                                                                                                                                                                                                                        | of the leaves :      | = 146.975<br>  <b>SECT</b>           | ION D                                |            |     |     |
|     |                                                                                                                                                                                                                                       |                      |                                      |                                      |            |     |     |
|     |                                                                                                                                                                                                                                       | Section D            | consists of 4 qu                     | uestions of 5 n                      | narks each |     |     |
| 32. | Let the speed of the stream be x km/h.  The speed of the boat upstream = $(18 - x)$ km/h and the speed of the boat downstream = $(18 + x)$ km/h.  The time taken to go upstream = $\frac{distance}{dtotal} = \frac{24}{18 - x}$ hours |                      |                                      | 1                                    |            |     |     |
|     | the time taken to go downstream = $\frac{distance}{spe} = \frac{24}{18+x}$ hours According to the question,                                                                                                                           |                      |                                      |                                      | 1          |     |     |
|     | $\frac{24}{18-x} - \frac{24}{18+x} = 1$                                                                                                                                                                                               |                      |                                      |                                      | 1          |     |     |
|     |                                                                                                                                                                                                                                       |                      |                                      |                                      |            |     |     |
|     | $24(18 + x) - 24(18 - x) = (18 - x) (18 + x)$ $x^{2} + 48x - 324 = 0$                                                                                                                                                                 |                      |                                      |                                      |            |     |     |
|     | x = 6  or  -54<br>Since x is the speed of the stream, it cannot be negative.                                                                                                                                                          |                      |                                      |                                      | 1          |     |     |
|     | Therefore, $x = 6$ gives the speed of the stream = $6 \text{ km/h}$ .                                                                                                                                                                 |                      |                                      |                                      | 1          |     |     |
|     | [or]                                                                                                                                                                                                                                  |                      |                                      |                                      | 1          |     |     |
|     | Let the time taken by the smaller pipe to fill the tank = $x$ hr.<br>Time taken by the larger pipe = $(x - 10)$ hr                                                                                                                    |                      |                                      |                                      |            | 1/2 |     |
|     | Part of the tank filled by smaller pipe in 1 hour = $\frac{1}{x}$                                                                                                                                                                     |                      |                                      |                                      |            |     |     |
|     | Part of the tank filled by larger pipe in 1 hour = $\frac{x}{x-10}$                                                                                                                                                                   |                      |                                      |                                      | 1          |     |     |
|     | The tank can be filled in $9\frac{3}{8} = \frac{75}{8}$ hours by both the pipes together.                                                                                                                                             |                      |                                      |                                      | 1/2        |     |     |
|     | Part of t                                                                                                                                                                                                                             | he tank filled l     | by both the pipes                    | $\sin 1 \text{ hour} = \frac{8}{75}$ | -          |     | 1/2 |

|     | Therefore, $\frac{1}{x} + \frac{1}{x - 10} = \frac{8}{75}$ $8x^2 - 230x + 750 = 0$                                                                                                          | 1/2      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|     | $x = 25, \frac{30}{8}$                                                                                                                                                                      | 1        |
|     | Time taken by the smaller pipe cannot be $30/8 = 3.75$ hours, as the time taken by                                                                                                          | 1/2      |
|     | the larger pipe will become negative, which is logically not possible. Therefore, the time taken individually by the smaller pipe is 25 hours and the larger pipe will be $25-10=15$ hours. | 1/2      |
| 33. | (a) Statement – $\frac{1}{2}$                                                                                                                                                               |          |
|     | Given and To Prove – ½                                                                                                                                                                      |          |
|     | Figure and Construction ½                                                                                                                                                                   | 3        |
|     | Proof – 1 ½                                                                                                                                                                                 |          |
|     | [b] Draw DG    BE                                                                                                                                                                           |          |
|     | In $\triangle$ ABE, $\frac{AB}{BD} = \frac{AE}{GE}$ [BPT]                                                                                                                                   | 1/2      |
|     | In $\triangle$ ABE, $\overline{BD} - \overline{GE}$ [BP1]                                                                                                                                   |          |
|     | CF = FD [F is the midpoint of DC](i)                                                                                                                                                        | 1/2      |
|     | In $\triangle$ CDG, $\frac{DF}{CF} = \frac{GE}{CE} = 1$ [Mid point theorem]                                                                                                                 | 1/2      |
|     | GE = CE(ii)                                                                                                                                                                                 |          |
|     | ∠CEF = ∠CFE [Given]                                                                                                                                                                         |          |
|     | CF = CE [Sides opposite to equal angles](iii)<br>From (ii) & (iii) CF = GE(iv)                                                                                                              | 1/2      |
|     | From (i) & (iv) $GE = FD$                                                                                                                                                                   |          |
|     | $\therefore \frac{AB}{BD} = \frac{AE}{GE} \Rightarrow \frac{AB}{BD} = \frac{AE}{ED}$                                                                                                        |          |
|     | $\therefore {BD} = {GE} \Rightarrow {BD} = {FD}$                                                                                                                                            |          |
| 34. | Longeth of the good 1. Fore width of the good by 44                                                                                                                                         |          |
|     | Length of the pond, $l = 50m$ , width of the pond, $b = 44m$                                                                                                                                |          |
|     | Water level is to rise by, $h = 21 \text{ cm} = \frac{21}{100} \text{ m}$                                                                                                                   |          |
|     | Volume of water in the pond = lbh = $50 \times 44 \times \frac{21}{100} \text{ m}^3 = 462 \text{ m}^3$                                                                                      | 1        |
|     | Diameter of the pipe = 14 cm                                                                                                                                                                |          |
|     | Radius of the pipe, $r = 7cm = \frac{7}{100}m$                                                                                                                                              |          |
|     | Area of cross-section of pipe = $\pi r^2$                                                                                                                                                   |          |
|     | $= \frac{22}{7} \times \frac{7}{100} \times \frac{7}{100} = \frac{154}{10000} \text{ m}^2$                                                                                                  | 1        |
|     |                                                                                                                                                                                             | 1/2      |
|     | Rate at which the water is flowing through the pipe, h = 15km/h = 15000 m/h Volume of water flowing in 1 hour = Area of cross-section of pipe x height of water                             | 1/2      |
|     | coming out of pipe                                                                                                                                                                          | 72       |
|     | $= \left(\frac{154}{10000} \times 15000\right) m^3$                                                                                                                                         | 1        |
|     | Volume of the pond                                                                                                                                                                          |          |
|     | Time required to fill the pond = $\frac{Volume \ of \ the \ pond}{Volume \ of \ water \ flowing \ in \ 1 \ hour}$                                                                           | 1        |
|     | $=\frac{462 \times 10000}{15000} = 2 \text{ hours}$                                                                                                                                         |          |
|     | $154 \times 15000$<br>Speed of water if the rise in water level is to be attained in 1 hour = 30km/h                                                                                        |          |
|     | [or]                                                                                                                                                                                        |          |
|     | [OI]                                                                                                                                                                                        | <u> </u> |

|                                                   | Radius of the cylindrical tent (r) =<br>Total height of the tent =      |                                   |                                          | t     |                                 |
|---------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------|------------------------------------------|-------|---------------------------------|
|                                                   | Height of the cylinder =                                                |                                   |                                          | 10.5m |                                 |
| Height of the Conical part = 10.5 m               |                                                                         |                                   |                                          |       | 1/2                             |
| Slant height of the cone (l) = $\sqrt{h^2 + r^2}$ |                                                                         |                                   |                                          |       |                                 |
| $=\sqrt{(10.5)^2+(14)^2}$ 14m 3m                  |                                                                         |                                   |                                          |       |                                 |
|                                                   | $=\sqrt{110.25+196}$                                                    |                                   |                                          |       | 1                               |
|                                                   |                                                                         | 6.25 = 17.5  m                    |                                          |       | 1                               |
|                                                   | Curved surface area of cylindrical                                      | _                                 |                                          |       |                                 |
|                                                   |                                                                         | $=2\pi rh$                        |                                          |       |                                 |
|                                                   |                                                                         | $=2x\frac{22}{7}\times14\times3$  | 3                                        |       | 1                               |
|                                                   |                                                                         | $= 264 \text{ m}^2$               |                                          |       |                                 |
|                                                   | Curved surface area of conical por                                      |                                   |                                          |       |                                 |
|                                                   |                                                                         | =πrl<br>22                        |                                          |       |                                 |
|                                                   |                                                                         | $=\frac{22}{7}\times14\times17.5$ |                                          |       | 1                               |
|                                                   |                                                                         | $=770 \text{ m}^2$                | 1024 2                                   |       | 1/2                             |
|                                                   | Total curved surface area = 264 r<br>Provision for stitching and wastag |                                   | 1034 m <sup>2</sup><br>26 m <sup>2</sup> |       |                                 |
|                                                   |                                                                         | ge –                              | 20 111-                                  |       | 1/2                             |
|                                                   | Area of canvas to be purchased                                          |                                   | 1060 m <sup>2</sup>                      |       | /2                              |
|                                                   | Cost of canvas = Rate × Surface ar                                      | ea                                |                                          |       | 1/2                             |
|                                                   | = 500 x 1060 = ₹ 5                                                      | 5,30,000/-                        |                                          |       |                                 |
| 35.                                               |                                                                         | NI l C                            | C - lati                                 |       |                                 |
|                                                   | Marks obtained                                                          | Number of students                | Cumulative<br>frequency                  |       |                                 |
|                                                   | 20 - 30                                                                 | p                                 | р                                        |       |                                 |
|                                                   | 30 - 40                                                                 | 15                                | p + 15                                   |       |                                 |
|                                                   | 40 - 50                                                                 | 25                                | p + 40                                   |       | 1                               |
|                                                   | 50 - 60                                                                 | 20                                | p + 60                                   |       |                                 |
|                                                   | 60 - 70                                                                 | q                                 | p + q + 60                               |       |                                 |
|                                                   | 70 - 80                                                                 | 8                                 | p + q + 68                               |       | 1/                              |
|                                                   | 80 - 90                                                                 | 10                                | p + q + 78                               |       | 1/ <sub>2</sub> 1/ <sub>2</sub> |
|                                                   | 00 70                                                                   | 90                                | p : q : 70                               |       | /2                              |
|                                                   | p + q + 78 = 90                                                         | 90                                |                                          |       |                                 |
|                                                   | 10                                                                      |                                   |                                          |       |                                 |
|                                                   | $\frac{n}{c}-c$                                                         |                                   |                                          |       |                                 |
|                                                   | $p + q = 12$ $Median = (l) + \frac{\frac{n}{2} - c}{f} \cdot h$         |                                   |                                          |       |                                 |
|                                                   | $50 = 50 + \frac{45 - (p + 40)}{20} \cdot 10$                           |                                   |                                          |       | 1/2                             |
|                                                   | 30 - 30 + 20                                                            |                                   |                                          |       | 1,                              |
|                                                   | $\frac{45 - (p + 40)}{20} \cdot 10 = 0$                                 |                                   |                                          |       | 1/2                             |
|                                                   | 45 - (p + 40) = 0                                                       |                                   |                                          |       |                                 |
|                                                   | P = 5<br>5 + a = 12                                                     |                                   |                                          |       | ½<br>½                          |
|                                                   | 5 + q = 12<br>q = 7                                                     |                                   |                                          |       |                                 |
|                                                   | Mode = $l + \frac{f1-f0}{2f1-f0-f2}$ . h                                |                                   |                                          |       | 1                               |
|                                                   | 2f1-f0-f2.11                                                            |                                   |                                          |       | <u> </u>                        |
|                                                   |                                                                         |                                   |                                          |       |                                 |

|     | $=40+\frac{25-15}{2(25)-15-20}.10$                                                      |     |
|-----|-----------------------------------------------------------------------------------------|-----|
|     | $= 40 + \frac{100}{15} = 40 + 6.67 = 46.67$                                             |     |
|     | 19                                                                                      |     |
|     | SECTION E                                                                               |     |
| 36. | (i) Number of throws during camp. a = 40; d = 12                                        | 1   |
|     | $t_{11} = a + 10d$                                                                      |     |
|     | $= 40 + 10 \times 12$                                                                   |     |
|     | = 160 throws                                                                            | 1/  |
|     | (ii) $a = 7.56 \text{ m}; d = 9 \text{cm} = 0.09 \text{ m}$                             | 1/2 |
|     | n = 6 weeks                                                                             | 1/2 |
|     | $t_n = a + (n-1) d$                                                                     | 1/2 |
|     | = 7.56 + 6(0.09) $= 7.56 + 0.54$                                                        | 1/  |
|     | Sanjitha's throw distance at the end of 6 weeks = 8.1 m                                 | 1/2 |
|     | (or)                                                                                    |     |
|     | a = 7.56  m; d = 9 cm = 0.09  m                                                         | 1,  |
|     | $t_n = 11.16 \text{ m}$                                                                 | 1/2 |
|     | $t_n = a + (n-1) d$                                                                     | 1/2 |
|     | 11.16 = 7.56 + (n-1)(0.09)                                                              | 1/2 |
|     | 3.6 = (n-1)(0.09)                                                                       | /2  |
|     |                                                                                         |     |
|     | $n-1 = \frac{3.6}{0.09} = 40$                                                           | 1/2 |
|     | n = 41                                                                                  | /2  |
|     | Sanjitha's will be able to throw 11.16 m in 41 weeks.                                   |     |
|     | (iii) $a = 40$ ; $d = 12$ ; $n = 15$                                                    |     |
|     | $S_n = \frac{n}{2} [2a + (n-1) d]$                                                      | 1/2 |
|     |                                                                                         |     |
|     | $S_n = \frac{15}{2} [2(40) + (15-1)(12)]$                                               |     |
|     | $=\frac{15}{2}[80+168]$                                                                 |     |
|     | $oldsymbol{\mathcal{L}}$                                                                |     |
|     | $=\frac{15}{2}$ [248] =1860 throws                                                      | 1/2 |
| 37. | (i) Let D be (a,b), then                                                                |     |
|     | Mid point of AC = Midpoint of BD                                                        |     |
|     |                                                                                         | 1/2 |
|     | $\left(\frac{1+6}{2}, \frac{2+6}{2}\right) = \left(\frac{4+a}{2}, \frac{3+b}{2}\right)$ |     |
|     | 4 + a = 7 $3 + b = 8$                                                                   |     |
|     | a = 3 b = 5                                                                             |     |
|     | Central midfielder is at (3,5)                                                          | 1/2 |
|     |                                                                                         |     |
|     |                                                                                         |     |
|     |                                                                                         |     |

|     | (ii) GH = $\sqrt{(-3-3)^2 + (5-1)^2} = \sqrt{36+16} = \sqrt{52} = 2\sqrt{13}$                               | 1/2                                |
|-----|-------------------------------------------------------------------------------------------------------------|------------------------------------|
|     | $GK = \sqrt{(0+3)^2 + (3-5)^2} = \sqrt{9+4} = \sqrt{13}$                                                    | 1/ <sub>2</sub><br>1/ <sub>2</sub> |
|     | $HK = \sqrt{(3-0)^2 + (1-3)^2} = \sqrt{9+4} = \sqrt{13}$                                                    | 1/2                                |
|     | GK +HK = GH ⇒G,H & K lie on a same straight line                                                            |                                    |
|     | [or]                                                                                                        | 1,                                 |
|     | $CJ = \sqrt{(0-5)^2 + (1+3)^2} = \sqrt{25+16} = \sqrt{41}$                                                  | 1/ <sub>2</sub><br>1/ <sub>2</sub> |
|     | $CI = \sqrt{(0+4)^2 + (1-6)^2} = \sqrt{16+25} = \sqrt{41}$                                                  | /2                                 |
|     | Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1)                               |                                    |
|     | Mid-point of IJ = $\left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$      | 1/ <sub>2</sub><br>1/ <sub>2</sub> |
|     | C is NOT the mid-point of IJ                                                                                | /2                                 |
|     | o to the time period of the                                                                                 |                                    |
|     | (iii) A,B and E lie on the same straight line and B is equidistant from A and E                             |                                    |
|     | $\Rightarrow$ B is the mid-point of AE                                                                      |                                    |
|     | $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$                                                       | 1/2                                |
|     | $\begin{pmatrix} 2 & 2 & 1 \\ 1 + a & 4 \cdot a & 3 \\ 2 & 4 + b & -6 \cdot b & -10 \end{cases}$ Fig (3-10) | 1/2                                |
| 38. |                                                                                                             | 1                                  |
|     | 80                                                                                                          | 1/2                                |
|     | (ii) $\tan 30^\circ = \frac{1}{CE}$                                                                         | 1/2                                |
|     | $\Rightarrow \frac{1}{\sqrt{2}} = \frac{80}{1}$                                                             | 1/2                                |
|     | $\sqrt{3}$ CE                                                                                               | 1/2                                |
|     | $\Rightarrow$ CE = $80\sqrt{3}$                                                                             |                                    |
|     | Distance the bird flew = AD = BE = CE-CB = $80\sqrt{3}$ – $80 = 80(\sqrt{3}$ -1) m                          |                                    |
|     |                                                                                                             | 1/2                                |
|     | (or)                                                                                                        | 1/2                                |
|     | $\tan 60^{\circ} = \frac{80}{CG}$                                                                           |                                    |
|     | 75 80<br>75 80                                                                                              | 1/2                                |
|     | $\Rightarrow \sqrt{3} = \frac{80}{CG}$                                                                      | 1/2                                |
|     | 9.0                                                                                                         |                                    |
|     | $\Rightarrow$ CG = $\frac{80}{\sqrt{3}}$                                                                    |                                    |
|     | Distance the ball travelled after hitting the tree =FA=GB = CB -CG                                          |                                    |
|     |                                                                                                             |                                    |
|     | GB = 80 - $\frac{80}{\sqrt{3}}$ = 80 (1 - $\frac{1}{\sqrt{3}}$ ) m                                          |                                    |
|     | (iii) Speed of the bird = $\frac{Distance}{Time\ taken} = \frac{20(\sqrt{3}+1)}{2}$ m/sec                   | 1/2                                |
|     |                                                                                                             | 1/2                                |
|     | $= \frac{20(\sqrt{3}+1)}{2} \times 60 \text{ m/min} = 600(\sqrt{3}+1) \text{ m/min}$                        | 72                                 |
|     |                                                                                                             |                                    |